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An Introduction to Bayesian Estimation

6.1 CHAPTER OVERVIEW

Chapter 7 introduces a second “modern” missing data approach, multiple imputation. Mul-
tiple imputation generates several copies of the data set and fi lls in (i.e., imputes) each copy 
with different estimates of the missing values. The imputation process is conceptually straight-
forward because it closely resembles the stochastic regression procedure from Chapter 2 (i.e., 
impute missing values with predicted scores and add a random residual to each imputed 
value). However, the mathematical machinery behind multiple imputation is heavily en-
trenched in Bayesian methodology. At one level, it is possible to effectively implement mul-
tiple imputation in a research study without fully understanding its Bayesian underpinnings. 
For example, multiple imputation software packages employ default settings that make Baye-
sian aspects of the analysis transparent to the user, and many multiple imputation primers 
make little to no reference to Bayesian methodology (Allison, 2002; Enders, 2006; Schafer & 
Graham, 2001; Schafer & Olsen, 1998; Sinharay, Stern, & Russell, 2001). However, under-
standing multiple imputation at a deeper level requires a background in Bayesian statistics, 
and accessing the seminal missing data work (Little & Rubin, 2002; Rubin, 1987; Schafer, 
1997) can be diffi cult without this knowledge.

This chapter takes a hiatus from missing data issues to focus on Bayesian estimation. 
The goal of the chapter is to provide a user-friendly introduction to Bayesian statistics, while 
still providing a level of detail that will serve as a springboard for accessing the technically 
oriented missing data literature. The chapter is far from comprehensive, and I focus on aspects 
of Bayesian estimation that are particularly relevant to a multiple imputation analysis. A 
number of comprehensive resources are available in the literature (e.g., Bolstad, 2007; Gel-
man, Carlin, Stern, & Rubin, 1995), as are additional primer articles (e.g., Lee & Wagen-
makers, 2005; Pruzek, 1997; Rupp, Dey, & Zumbo, 2004; Stephenson & Stern, 1998).



 An Introduction to Bayesian Estimation 165

6.2 WHAT MAKES BAYESIAN STATISTICS DIFFERENT?

The defi nition of a parameter is a key distinction between Bayesian estimation and the so-
called frequentist paradigm that is the predominant approach to estimation and signifi cance 
testing in many disciplines (e.g., psychology, education, business). The frequentist approach 
defi nes a parameter as a fi xed characteristic of the population. The goal of a frequentist analy-
sis is to estimate the true value of the parameter and establish a confi dence interval around 
that estimate. The standard error is integral to this process and estimates the variability of 
the estimate across repeated samples. Defi ning a parameter as a fi xed quantity leads to some 
important subtleties. For example, consider the interpretation of a 95% confi dence interval. 
It is incorrect to say that there is a 95% probability that the parameter falls between values of 
A and B because the confi dence interval from any single sample contains the parameter or it 
does not. Instead, the confi dence interval describes the expected performance of the interval 
across repeated samples. For example, if you drew 100 samples from a population and con-
structed a 95% confi dence interval around the parameter estimate from each sample, you 
would expect 95 of the intervals to include the population parameter. In a similar vein, the 
probability value from a frequentist signifi cance test describes the proportion of repeated 
samples that would yield a test statistic equal to or greater than that of the data. In both situ-
ations, the probability statement applies to the data, not to the parameter.

In contrast, the Bayesian paradigm views a parameter as a random variable that has a 
distribution. One of the goals of a Bayesian analysis is to describe the shape of this distri-
bution. For example, the mean and the standard deviation describe the distribution’s center 
and spread, respectively. The mean quantifi es the parameter’s most likely value (assuming 
that the distribution is symmetric) and is similar to a frequentist point estimate. The stan-
dard deviation (or alternatively, the variance) is analogous to a frequentist standard error, but 
it describes the degree of uncertainty about the parameter after observing the data. The 
Bayesian notion of uncertainty does not involve repeated sampling. Viewing the parameter as 
a random variable contrasts the frequentist approach in other ways. For example, a Bayesian 
credible interval (the analog to a frequentist confi dence interval) allows you to say that there 
is a 95% probability that the parameter falls between values of A and B. This interpretation 
is very different from that of the frequentist approach because it attaches the probability 
statement to the parameter, not to the data.

6.3 A CONCEPTUAL OVERVIEW OF BAYESIAN ESTIMATION

A Bayesian analysis consists of three major steps: (1) specify a prior distribution for the 
parameter of interest, (2) use a likelihood function to summarize the data’s evidence about 
different parameter values, and (3) combine information from the prior distribution and the 
likelihood to generate a posterior distribution that describes the relative probability of dif-
ferent parameter values. Describing the shape of the posterior distribution is a key goal of a 
Bayesian analysis, and familiar statistics such as the mean and the variance summarize the 
location (i.e., the center of) and the spread of the posterior, respectively. This section gives a 
conceptual description of these three steps. Because the goal is to introduce the underlying 
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logic behind Bayesian estimation, I am purposefully vague about many of the mathematical 
details. For now, I use a straightforward univariate analysis example where the goal is to esti-
mate the proportion of clinically depressed individuals in a population. Subsequent sections, 
however, give a more thorough description of the mathematics and illustrate the application 
of Bayesian estimation to a mean vector and a covariance matrix (the key parameters in a 
multiple imputation analysis). As you will see, multivariate analyses use the same three-step 
procedure described in this section.

The Prior Distribution

The fi rst step in a Bayesian analysis is to specify a prior distribution for the parameter of inter-
est. The prior distribution describes your subjective beliefs about the relative probability of 
different parameter values before collecting any data. To illustrate, suppose that two research-
ers want to use Bayesian methodology to estimate the proportion of clinically depressed in-
dividuals in a population, π. The prior distribution specifi es the relative probability of every 
possible population proportion. After conducting a literature review, Researcher A believes 
that depression rates between 0.10 and 0.15 are very likely, and she feels that the relative 
probability rapidly decreases as the proportion approaches zero or one. The dashed curve in 
Figure 6.1 depicts this researcher’s prior beliefs. Notice that the highest point of the distribu-
tion is located at π = 0.13, and the relative probability (i.e., the height of the curve) quickly 
decreases as π approaches zero or one. In contrast, Researcher B is uncomfortable speculat-
ing about different parameter values, so he assigns an equal weight to every proportion be-
tween zero and one. The fl at line in Figure 6.1 depicts this researcher’s prior beliefs. The 
Bayesian literature often refers to Researcher B’s prior distribution as a noninformative prior 
because it represents a lack of knowledge about the population parameter.

The Likelihood Function

The second step of a Bayesian analysis is to collect data and use a likelihood function to sum-
marize the data’s evidence about different parameter values. This step applies the maximum 
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FIGURE 6.1. The prior distributions from the depression example. Researcher A’s prior is the dashed 
curve that assigns higher probabilities to population proportions between 0.10 and 0.15. Researcher 
B’s prior distribution is the solid line that assigns an equal weight to every parameter value.
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likelihood principles that I outlined in Chapter 3, but uses the likelihood rather than the log-
likelihood. Recall from Chapter 3 that substituting the data and a parameter value into a 
probability density function (e.g., the equation that defi nes the normal curve) returns the 
likelihood (i.e., relative probability) of the data, given that particular parameter value. Repeat-
ing this process for different parameter values yields a likelihood function that describes the 
relative probability of the data across a range of parameter values.

For example, suppose that the two researchers drew a sample and found that 7 out of the 
100 individuals whom they assessed met their criteria for clinical depression. The binomial 
density function is the appropriate likelihood for a binary outcome variable. The binomial den-
sity function is quite different from that of the normal curve in Chapter 3, but it works in the 
same way. Specifi cally, you substitute the data (e.g., 7 out of 100 diagnosed cases) and a 
population proportion (e.g., π = 0.15) into the density function, and the equation returns the 
likelihood of observing the sample data from a population with that particular prevalence 
rate. Repeating the computations using different population proportions yields a likelihood 
function that shows how the probability of the data varies as a function of π. For example, 
Figure 6.2 shows the binomial likelihood function for the depression data. Notice that the 
maximum likelihood estimate (i.e., the highest point on the function) is the sample propor-
tion, π̂ = .07.

The Posterior Distribution

The fi nal step of a Bayesian analysis is to defi ne the posterior distribution of the parameter. 
The posterior distribution is a composite distribution that combines information from the 
prior and the likelihood to generate an updated set of relative probabilities. I describe the pos-
terior in more detail later in the chapter, but the basic idea is to weight each point on the 
likelihood function by the magnitude of your prior beliefs. For example, if you attached a 
high prior probability to a particular parameter value, the posterior would increase the height 
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FIGURE 6.2. The binomial likelihood function from the depression example. The height of the 
likelihood function gives the relative probability that the population on the horizontal axis would pro-
duce a sample where 7 out of 100 individuals are diagnosed with depression. The maximum of the 
function (i.e., the maximum likelihood estimate) corresponds with π = 0.07, which is the sample 
proportion.
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of the likelihood function at that point on the horizontal axis. Conversely, if you assigned a 
low prior probability to a particular parameter value, the posterior would decrease the height 
of the likelihood function at that point.

To illustrate, reconsider the depression scenario. Prior to collecting data, Researcher A 
assigned a high probability to depression rates between 0.10 and 0.15. The data supported 
somewhat lower values and indicated that π = 0.07 is the most likely population proportion. 
Figure 6.3 shows Researcher A’s posterior distribution as a dashed line. The effect is subtle, 
but her posterior distribution is a blend of her prior and the likelihood function. For reasons 
that I explain later, the solid line in Figure 6.3 (Researcher B’s posterior distribution) is iden-
tical to the likelihood function. Comparing the relative height of the two curves at π = 0.05, 
you can see that Researcher A’s posterior distribution is less elevated than the likelihood 
function. Researcher A assigned a very low prior probability to π = 0.05, which effectively 
downweights the likelihood function at that point. Next, compare the relative height of the 
two distributions at π = .15. Researcher A assigned a high prior probability to this parameter 
value, so her posterior distribution is slightly elevated relative to the likelihood function (i.e., 
the prior probability boosts this point on the likelihood function). In contrast, Researcher B 
specifi ed a prior distribution where every parameter value has the same probability. Conse-
quently, his posterior distribution weights every point on the likelihood function by the same 
amount and is identical to the likelihood function in Figure 6.2.

Summarizing the shape of the posterior distribution is an important part of a Bayesian 
analysis. Without delving into any equations, Researcher A’s posterior distribution has a 
mean of 0.095, a mode of 0.090, and a standard deviation of 0.024. In contrast, Researcher 
B’s posterior has a mean of 0.078, a mode of 0.070, and a standard deviation of 0.026. The 
fact that Researcher A’s distribution has somewhat higher measures of central tendency fol-
lows from the fact that she assigned high prior probabilities to proportions between 0.10 and 
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FIGURE 6.3. The posterior distributions from the depression example. Researcher A’s posterior 
distribution is the dashed curve. She specifi ed a prior distribution that assigns higher weights to popu-
lation proportions between 0.10 and 0.15. Consequently, her posterior distribution has shifted slightly 
to the right of the likelihood function in Figure 6.2. Researcher B’s posterior distribution is the solid 
curve. He specifi ed a prior distribution where every parameter value has the same probability, so his 
posterior distribution is identical to the likelihood.
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0.15. Nevertheless, the relative similarity of the two sets of summary statistics is noteworthy, 
particularly given that the researchers adopted radically different prior distributions.

For comparison purposes, a frequentist analysis of the depression data yields a point 
estimate and standard error of π̂ = 0.07 and SE = 0.026, respectively. Notice that these esti-
mates are identical to Researcher B’s posterior mode and posterior standard deviation. Al-
though the Bayesian and frequentist analyses give the same numeric results, they have very 
different interpretations. For example, π̂ estimates the true population proportion, and the 
standard error quantifi es the variability of the point estimate across repeated samples. In con-
trast, the posterior mode is the most likely value from a distribution of proportions, and the 
posterior standard deviation quantifi es the spread of the parameter distribution.

More on the Prior Distribution

A Bayesian analysis uses the prior distribution to incorporate subjective beliefs as a data source. 
This may be troublesome to researchers who are accustomed to the frequentist paradigm, 
but the idea of using prior information actually makes good intuitive sense. For example, 
suppose that a researcher had access to a meta-analysis prior to designing a study. Meta-
analyses estimate the average effect size in a body of research and often summarize the vari-
ability of the effect across different design characteristics (e.g., Ioannidis et al., 2001; Lipsey 
& Wilson, 1993; Rubin, 1992). The Bayesian approach provides a mechanism for incorpo-
rating prior knowledge into an analysis (e.g., by using the meta-analysis to formulate a prior 
distribution), whereas frequentist estimation essentially ignores the fact that previous studies 
even exist. In the frequentist paradigm, the benefi t of having a meta-analysis is limited to 
estimating power, determining sample size, and formulating a directional hypothesis.

If the notion of using prior information as a data source still feels uncomfortable, there 
is one fi nal consideration. The depression example did not illustrate this point, but it ends 
up that you can specify the amount of infl uence that the prior exerts on the analysis results. 
Specifying a prior distribution generally requires three pieces of information: the location of 
the distribution (e.g., its mean), the spread of the distribution (e.g., its standard deviation), 
and the number of “hypothetical data points” associated with the prior. Collectively, Bayes-
ian texts sometimes refer to these characteristics as the distribution’s hyperparameters. Im-
portantly, you can use the sample size metric to quantify the prior distribution’s infl uence. 
For example, if you have relatively little confi dence in the prior distribution, you can assign 
a small number of imaginary data points to the prior. In contrast, you can assign a large num-
ber of data points to the distribution if you are very confi dent in your prior beliefs.

Returning to the depression example, note that the researchers’ prior distributions have 
very different hyperparameters. The two distributions in Figure 6.1 are shaped quite differ-
ently, which implies that they differ with respect to their location and spread. However, the 
fact that the prior distributions imply different sample sizes is not so obvious. Without going 
into the mathematical details, Researcher A’s prior distribution (i.e., the dashed curve) as-
signs a weight that is equivalent to approximately 45 imaginary data points. Because the prior 
is contributing roughly half as much information as the data, the resulting posterior distri-
bution is a blend of the prior and the likelihood function. In contrast, Researcher B’s non-
informative prior distribution contributes nothing to the estimation process, so his posterior 
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distribution has the same shape as the likelihood function, and his posterior mode is identi-
cal to the sample proportion. In general, adopting a noninformative prior yields a posterior 
distribution that is defi ned solely by the data. This is an important point that will be revisited 
in this chapter and the next.

6.4 BAYES’ THEOREM

This section fi lls in some of the mathematical details omitted from the previous depression 
example. As you will see, Bayes’ theorem is the mathematical machinery behind a Bayesian 
analysis and plays a key role in defi ning the shape of the posterior distribution. In fact, the 
three steps in a Bayesian analysis (i.e., specify a prior, estimate the likelihood, defi ne the pos-
terior) are terms in the theorem equation.

Bayes’ theorem describes the relationship between two conditional probabilities. For two 
random events, A and B, the theorem is

 p(B)p(A|B)
 p(B|A) = ————— (6.1)
 p(A)

where p(B|A) is the conditional probability of observing event B, given that event A has al-
ready occurred, p(A|B) is the conditional probability of A given B, p(B) is the probability of 
B alone, and p(A) is the marginal probability of A.

The generic notation in Equation 6.1 offers little insight into the application of Bayes’ 
theorem to statistics, but the linkage becomes slightly clearer if you replace A with the sample 
data and B with a parameter, as follows.

 p(θ)p(Y|θ)
 p(θ|Y ) = ————— (6.2)
 p(Y )

The terms in Equation 6.2 now align with the concepts that I introduced in the previous sec-
tion. Specifi cally, θ is the parameter of interest (e.g., the proportion of clinically depressed 
individuals), Y is the sample data, p(θ) is the parameter’s prior distribution, p(Y|θ) is the 
likelihood (i.e., the conditional probability of the data, given some assumed value of θ), p(Y ) 
is the marginal distribution of the data, and p(θ|Y ) is the posterior distribution (i.e., the 
conditional probability of the parameter, given the data).

In words, Bayes’ theorem is

 Prior × Likelihood
 Posterior = ———–———— (6.3)
 Scaling factor

I previously described the posterior distribution as a weighted likelihood function, where 
the basic idea is to adjust each point on the likelihood function by the magnitude of the cor-
responding prior probability. This is accomplished in the numerator of Bayes’ theorem by 
multiplying the likelihood function by the corresponding prior probabilities. As I explain 
later, the denominator of the theorem is simply a scaling constant that makes the area under 
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the posterior distribution sum (i.e., integrate) to one. Dividing by a constant does not change 
the basic shape of the posterior distribution, so ignoring the denominator yields the follow-
ing simplifi ed expression.

 Posterior ∝ Prior × Likelihood (6.4)

Equation 6.4 says that the posterior distribution is proportional to the prior distribution times the 
likelihood. This is the fundamental idea behind Bayesian estimation and is a point that will 
resurface throughout the rest of the chapter.

6.5 AN ANALYSIS EXAMPLE

Having fi lled in some of the mathematical details, I return to the depression example and 
illustrate how Bayes’ theorem applies to a statistical analysis. Again, the basic procedure that 
I describe in this section generalizes to multivariate estimation problems and to a multiple 
imputation analysis.

The Prior Distribution

The fi rst step of a Bayesian analysis is to specify a prior distribution. The prior distributions 
in Figure 6.1 belong to the beta distribution family (by family of distributions, I mean a collec-
tion of distributions that share the same basic shape or function, much like the t-distribution 
family). Like the normal curve, a probability density function defi nes the shape of the beta 
distribution. The beta density function is

 p(π) ∝ πa–1(1 – π)b–1 (6.5)

where p(π) is the height of the curve at a particular value of π, and a and b are constants that 
defi ne the shape of the distribution (e.g., larger values of a and b produce a distribution with 
greater spread, and the distribution becomes asymmetric when a ≠ b). Density functions 
typically contain a collection of scaling terms that make the area under the distribution sum 
to one. Excluding these terms has no bearing on the distribution’s shape, so I omit the scal-
ing factor from Equation 6.5 and use the “proportional to” symbol (i.e., ∝) to indicate that 
the two sides of the equation differ by a multiplicative constant. To simplify things, I use this 
convention throughout the chapter.

Returning to the depression example, note that Table 6.1 gives the height of the prior 
distributions at integer values of π between 0.05 and 0.20. To begin, consider the height of 
Researcher A’s prior distribution at π = 0.05 and π = 0.10. Her prior is a beta distribution 
with a = 7 and b = 40, so substituting π = 0.05 and π = 0.10 into the beta density function 
yields values of 0.792 and 6.153, respectively (note that I used the previously omitted scaling 
constant in these calculations). Visually, 0.792 and 6.153 represent the height of the prior 
distribution at parameter values of π = 0.05 and π = 0.10, respectively. Similar to the likelihood 
values from Chapter 3, you can think of these quantities as relative probabilities. The relative 
magnitude of the prior probabilities refl ects Researcher A’s belief that π = 0.10 was a more 
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plausible parameter value than π = 0.05. Next, consider Researcher B’s prior, which is a beta 
distribution with a = 1 and b = 1. In this situation, the beta density function in Equation 6.5 
always returns a value of 1.00, so Researcher B is assigning the same weight to every possible 
value of π.

The Likelihood Function

The second step of a Bayesian analysis is to collect data and use a likelihood function to sum-
marize the data’s evidence about different parameter values. This step applies the maximum 
likelihood principles outlined in Chapter 3. Specifi cally, substituting the sample data and a 
parameter value (i.e., π) into a density function yields the likelihood (i.e., relative probability) 
of the data, given that parameter value. Repeating this process for different parameter values 
yields a likelihood function that describes the relative probability of the data across a range 
of parameter values. The binomial density function is the appropriate likelihood for a binary 
outcome variable (i.e., each individual is classifi ed as depressed or not depressed). The bino-
mial density function is

 p(y|π) ∝ πy(1 – π)N–y (6.6)

where p(y|π) is the height of the curve at a particular value of π, y is the number of “suc-
cesses” (e.g., the number of depressed individuals), and N is the total number of “trials” (e.g., 
the sample size). Again, I omit the scaling constant from the equation to simplify things.

TABLE 6.1. Prior Distributions, Likelihood, and Posterior Distributions from the 
Depression Example

 Researcher A Researcher B

   Prior × Scaled   Prior × Scaled
π Prior Likelihood Likelihood posterior Prior Likelihood Likelihood posterior

0.05 0.7919 0.1060 0.0840 0.0036 1.0000 0.1060 0.1060 0.1169
0.06 1.5651 0.1420 0.2222 0.0190 1.0000 0.1420 0.1420 0.1565
0.07 2.6006 0.1545 0.4018 0.0570 1.0000 0.1545 0.1545 0.1703
0.08 3.8012 0.1440 0.5472 0.1134 1.0000 0.1440 0.1440 0.1587
0.09 5.0318 0.1188 0.5979 0.1640 1.0000 0.1188 0.1188 0.1310
0.10 6.1533 0.0889 0.5470 0.1835 1.0000 0.0889 0.0889 0.0980
0.11 7.0505 0.0613 0.4321 0.1661 1.0000 0.0613 0.0613 0.0675
0.12 7.6483 0.0394 0.3013 0.1257 1.0000 0.0394 0.0394 0.0434
0.13 7.9170 0.0238 0.1887 0.0815 1.0000 0.0238 0.0238 0.0263
0.14 7.8679 0.0137 0.1075 0.0461 1.0000 0.0137 0.0137 0.0151
0.15 7.5429 0.0075 0.0563 0.0232 1.0000 0.0075 0.0075 0.0082
0.16 7.0027 0.0039 0.0273 0.0104 1.0000 0.0039 0.0039 0.0043
0.17 6.3153 0.0020 0.0124 0.0043 1.0000 0.0020 0.0020 0.0022
0.18 5.5466 0.0009 0.0052 0.0016 1.0000 0.0009 0.0009 0.0010
0.19 4.7543 0.0004 0.0021 0.0005 1.0000 0.0004 0.0004 0.0005
0.20 3.9842 0.0002 0.0008 0.0002 1.0000 0.0002 0.0002 0.0002

  Sums = 3.5338 1.0000   0.9073 1.0000
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Returning to the depression example, the researchers assessed a sample of 100 individu-
als and found that seven people met their criteria for clinical depression. Substituting y = 7 
and N = 100 into Equation 6.6 yields the binomial likelihood function in Figure 6.2. The 
height of the likelihood function gives the relative probability of observing 7 depressed cases 
in a sample of 100 individuals, given the population parameter value on the horizontal axis 
(i.e., the conditional probability of the data, given some assumed value of π). Table 6.1 gives 
the numeric value of the likelihood for parameter values between π = 0.05 and 0.20 (again, 
I used the previously omitted scaling constant for these calculations in order to avoid exces-
sive decimals). Consider the likelihood associated with π = 0.05 and π = 0.10, the values of 
which are 0.106 and 0.089, respectively. Consistent with the interpretation of the likelihood 
in Chapter 3, 0.106 and 0.089 are the relative probabilities of observing the data (i.e., 7 out 
of 100 diagnosed individuals) from a population with π = 0.05 and π = 0.10, respectively. 
Visually, these numeric values correspond with the height of the curve at π = 0.05 and π = 
0.10. Because π = 0.05 returns a higher relative probability than π = 0.10, the data provide 
slightly more evidence in favor of π = 0.05.

Before proceeding, you may have noticed that Equations 6.5 and 6.6 are identical with 
the exception of their exponents. Specifi cally, the beta distribution has exponents of a – 1 
and b – 1, whereas the binomial distribution has corresponding exponents of y (i.e., the 
number of successes) and N – y (i.e., the number of nonsuccesses). This similarity is not 
coincidental, because the binomial and beta densities actually belong to the same distribu-
tion family (i.e., the same function describes the shape of the distributions). Specifi cally, the 
binomial distribution is a beta distribution in which a = y + 1 and b = N – y + 1. Research-
ers frequently adopt priors that belong to the same distribution family as the likelihood func-
tion, and this is true of the depression example. These so-called conjugate distributions are 
advantageous because they produce a posterior distribution that also belongs to the same 
family.

In a previous section, I explained that assigning a number of imaginary data points to 
the prior determines its infl uence on the analysis results (the hypothetical sample size is 
one of the prior distribution’s hyperparameters). The equivalence of the beta and the bino-
mial distributions illustrates this point. For example, Researcher A’s prior is a beta distribu-
tion with a = 7 and b = 40. A beta distribution with a = 7 equates to a binomial distribution 
with a hypothetical sample of six depressed cases (i.e., a = y + 1, so y = a – 1 = 6). Similarly, 
b = 40 corresponds to a binomial distribution with 45 imaginary data points (i.e., b = N – y 
+ 1, so N = b – 1 + y = 45). In contrast, Researcher B’s fl at prior is a beta distribution with 
a = 1 and b = 1. This equates to a binomial distribution with an imaginary sample size of zero 
(i.e., y = a – 1 = 0 and N = b – 1 + y = 0). Note that I use the words “hypothetical” and 
“imaginary” to describe the sample size because the researchers specifi ed their prior distribu-
tions before collecting data.

The Posterior Distribution

The fi nal step of a Bayesian analysis is to defi ne the posterior distribution. Ignoring the de-
nominator of Bayes’ theorem for the moment, note that Equation 6.4 says that the height of 
the posterior distribution at each value of π is proportional to the product of the prior times 
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the likelihood. Conceptually, multiplying the likelihood by the prior weights each point on the 
likelihood function by its prior probability. To illustrate, return to the relative probabilities in 
Table 6.1. To begin, consider the height of Researcher A’s prior distribution at π = 0.05 and 
π = 0.10, the values of which are 0.792 and 6.153, respectively. Multiplying each quantity by 
its corresponding likelihood gives 0.792 × 0.106 = 0.084 and 6.153 × 0.089 = 0.547. Visu-
ally, 0.084 and 0.547 represent the height of Researcher A’s posterior distribution at π = 0.05 
and π = 0.10, respectively. Consequently, after updating her prior beliefs with information 
from the data, Researcher A would claim that π = 0.10 is a more plausible parameter value 
than π = 0.05. Turning to Researcher B, the height of his prior distribution was 1.00 at every 
value of π. Multiplying the prior by the likelihood gives values of 1.00 × 0.106 = 0.106 and 
1.00 × .089 = 0.089. Again, 0.106 and 0.089 represent the height of Researcher B’s posterior 
distribution at π = 0.05 and π = 0.10, respectively. Unlike Researcher A, Researcher B would 
claim that π = 0.05 is somewhat more plausible than π = 0.10. However, notice that Re-
searcher B’s conclusion is based solely on the data because the shape of his posterior distri-
bution is identical to that of the likelihood function. Again, this is an important consequence 
of adopting a noninformative prior distribution.

The Role of the Marginal Distribution

Until now, I have ignored the marginal distribution that appears in the denominator of Bayes’ 
theorem. As I explained previously, the marginal distribution is a scaling constant that does 
not infl uence the shape of the posterior. To understand how the marginal distribution works, 
consider a simple probability example. Suppose that you wanted to know the probability of 
fl ipping a coin three times and getting two heads. Three possible sequences produce this 
outcome: (1) heads, heads, tails, (2) heads, tails, heads, and (3) tails, heads, heads. By itself, 
the fact that the three different sequences produce two heads does not provide an accurate 
gauge of the probability because there is no way of knowing whether three sequences is a 
large number or a small number. Judging the probability becomes easier after dividing by the 
total number of possible sequences (there are eight). Now, it becomes clear that 37.5% of the 
sequences produce two heads. Notice that dividing by the total number of possible outcomes 
does not change the number of sequences that produce two heads, but it does standardize 
things in a way that makes the probabilities sum to one.

Using only the numerator of Bayes’ theorem is akin to expressing the posterior proba-
bilities on an unstandardized metric (e.g., three sequences produce two heads), and dividing 
by the marginal distribution standardizes the probabilities (e.g., 37.5% of the sequences 
produce two heads) such that the area under the posterior distribution sums to one. Concep-
tually, the marginal distribution works as follows. Suppose that you computed the height of 
the posterior distribution at every possible value of π by multiplying the prior probabilities 
by their corresponding likelihood values. Summing these products yields a quantity that is 
analogous to the total number of possible outcomes from the coin toss example. To illustrate, 
the bottom row of Table 6.1 sums the product of the prior times the likelihood for integer 
values of π between 0.05 and 0.20. The value of 3.5338 represents Researcher A’s marginal 
distribution, and 0.9073 is the corresponding value for Researcher B. The Scaled Posterior col-
umns of Table 6.1 divide the posterior probabilities by the appropriate marginal distribution. 
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Doing so effectively standardizes the height of the posterior distribution such that posterior 
probabilities sum to one.

In reality, the population proportion can take on an infi nite number of values between 
zero and one, so the example in Table 6.1 is not mathematically accurate. That is, the correct 
marginal distributions sum the product over every possible value of π, not just integer values 
between 0.05 and 0.20. With a continuous density function such as the beta distribution, 
the summation of the prior times the likelihood involves a calculus integral. Nevertheless, 
whether you think about it as a sum or an integral, the marginal distribution is a constant 
value that standardizes the height of the posterior distribution such that the total area under 
the curve sums (i.e., integrates) to one.

6.6 HOW DOES BAYESIAN ESTIMATION APPLY TO 
MULTIPLE IMPUTATION?

Multiple imputation generates several copies of the data and fi lls in (i.e., imputes) each copy 
with different estimates of the missing values. This process uses an iterative algorithm that 
repeatedly cycles between an imputation step and a posterior step (an I-step and a P-step, 
respectively). The I-step uses the stochastic regression procedure from Chapter 2 to impute 
the missing values, and the P-step uses the fi lled-in data to generate new estimates of the mean 
vector and the covariance matrix. Virtually every aspect of multiple imputation is rooted in 
Bayesian methodology, but the ideas from the previous sections are particularly relevant to 
the P-step because it is essentially a standalone Bayesian analysis that describes the posterior 
distribution of a mean vector and a covariance matrix.

Generating multiple sets of imputed values requires different estimates of the mean vec-
tor and the covariance matrix at each I-step (recall from Chapter 2 that the stochastic regres-
sion procedure uses !̂ and "̂ to construct a set of imputation regression equations), and the 
purpose of the P-step is to generate these parameter values. At each P-step, the iterative algo-
rithm uses the fi lled-in data from the preceding I-step to defi ne the posterior distributions of 
! and ". It then uses Monte Carlo simulation to “draw” new estimates of the mean vector 
and the covariance matrix from their respective posteriors. The subsequent I-step uses these 
updated parameter values to construct a new set of regression equations that are slightly dif-
ferent from those at the previous I-step. Repeating the two-step procedure a number of times 
generates several copies of the data, each of which contains unique estimates of the missing 
values.

Given the important role that the mean vector and the covariance matrix play in a mul-
tiple imputation analysis, the rest of the chapter is devoted to defi ning the posterior distribu-
tions of these parameters. As you will see, the estimation steps remain the same (i.e., specify 
a prior, estimate the likelihood, defi ne the posterior), but the distribution families are differ-
ent. Because each P-step uses a fi lled-in data set, the complete-data procedures described in 
this chapter are identical to those in a multiple imputation analysis. Finally, it is worth noting 
that the selection of prior distributions has received considerable attention in the Bayesian 
literature (e.g., see Kass & Wasserman, 1996). Because the majority of multiple imputation 
analyses rely on a standard set of noninformative priors, I limit the subsequent discussion 
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to the prior distributions that you are likely to encounter in multiple imputation software 
packages.

6.7 THE POSTERIOR DISTRIBUTION OF THE MEAN

This section illustrates how to apply Bayesian estimation principles to the mean. I start by 
applying the three analysis steps to a univariate example and later extend the ideas to multi-
variate data. To simplify things, I assume that the population variance is known, but this does 
not affect the underlying logic of the estimation process, nor does it affect the shape of the 
posterior distribution.

The Prior Distribution

The fi rst step of a Bayesian analysis is to specify a prior distribution. Consistent with the 
previous depression example, you could specify a prior distribution that assigns a higher 
weight to mean values that you think are more probable, or you could use a noninformative 
prior that equally weights every value of the mean. The standard noninformative prior is a fl at 
distribution that assigns an equal weight to every possible value of the mean. The Bayesian 
literature often refers to this as a Jeffreys’ prior, after a Bayesian theoretician who proposed 
a set of principles for developing noninformative priors (Jeffreys, 1946, 1961). Using my 
previous notation, note that the Jeffreys’ prior for the mean is p(µ) = 1.00. In words, the prior 
states that every possible value of the population mean has the same a priori weight of 1.00. 
Visually, this prior is identical to the solid line in Figure 6.1.

The Likelihood Function

The second step of a Bayesian analysis is to collect data and use the likelihood function to 
summarize the data’s evidence about different parameter values. Assuming a normal distri-
bution for the population data, the sample likelihood is

 1
 p(Y|µ, σ2) = ∏

N

i=1{——— e–.5(yi–µ)2/σ2} (6.7)
 √2πσ2

where braces contain the probability density function for the normal distribution (i.e., the 
likelihood for a single score), ∏ is the multiplication operator, and p(Y|µ, σ2) is the likeli-
hood of the sample data, given the values of µ and σ2. (In previous chapters, I used the 
generic symbol L to denote the likelihood.) Recall from Chapter 3 that substituting a score 
value and the population parameters into the density function returns the likelihood for an 
individual score (i.e., the height of the normal curve at yi), and multiplying the individual 
likelihood values gives the sample likelihood. Repeating these computations with different 
values of µ produces a likelihood function that describes the relative probability of the data 
across a range of population means.
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To illustrate the likelihood step, consider the IQ scores in Table 6.2. I designed these 
data to mimic an employee selection scenario in which prospective employees complete an 
IQ test during their interview and a supervisor subsequently rates their job performance fol-
lowing a 6-month probationary period. These are the same data that I used in Chapter 3 to 
illustrate maximum likelihood estimation. I used Equation 6.7 to compute the sample likeli-
hood for population mean values between 80 and 120, and Figure 6.4 shows the resulting 
likelihood function (for simplicity, I fi xed σ2 at its sample estimate of 199.58). The height of 
the curve is the relative probability that the sample of IQ scores in Table 6.2 originate from a 
normally distributed population with a mean equal to the value of µ on the horizontal axis 
and a variance equal to σ2 = 199.58. As seen in the fi gure, the maximum likelihood estimate 
of the mean is µ̂ = 100, which is the same estimate that I derived from the log-likelihood 
function in Chapter 3.

The Posterior Distribution

The fi nal step of a Bayesian analysis is to defi ne the posterior distribution. The numerator of 
Bayes’ theorem states that the height of the posterior is proportional to the product of the 
prior times the likelihood. Consistent with the previous depression example, the height of 
the posterior distribution at any given value of µ is the product of the prior probability and 
the likelihood. In this situation, obtaining the posterior distribution is simply a matter of 
multiplying each point on the likelihood function by a value of 1.00. Consequently, the shape 

TABLE 6.2. IQ and Job Performance Data

  Job
 IQ performance

 78 9
 84 13
 84 10
 85 8
 87 7
 91 7
 92 9
 94 9
 94 11
 96 7
 99 7
 105 10
 105 11
 106 15
 108 10
 112 10
 113 12
 115 14
 118 16
 134 12
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of the posterior distribution is identical to that of the likelihood function in Figure 6.4. More 
formally, the shape of the posterior distribution is

 σ2
 p(µ|Y, σ2) ∼ N(µ̂, —) (6.8)
 N

where p(µ|Y, σ2) is the posterior distribution, ∼N denotes a normal curve (the ∼ symbol 
means “distributed as”), µ̂ is the sample mean, and σ2/N is the variance of the posterior. In 
words, Equation 6.8 says that the posterior distribution is a normal curve that is centered at 
the sample mean and has a variance of σ2/N. Notice that the data alone defi ne the shape of 
the posterior (i.e., the distribution is centered at the maximum likelihood estimate), which 
is a consequence of adopting a noninformative prior distribution. In addition, the shape of 
the posterior is identical to the frequentist sampling distribution (e.g., the posterior variance 
is the square of the usual formula for the standard error of the mean).

The Posterior Distribution of a Mean Vector

A univariate example is useful for understanding the mechanics of Bayesian estimation, but 
multiple imputation relies on the posterior distribution of a mean vector. Fortunately, the 
previous ideas readily extend to multivariate data. For example, the standard noninformative 
prior for a mean vector is a multidimensional fl at surface that assigns an equal weight to 
every combination of mean values. Similarly, the likelihood function is a multivariate, rather 
than univariate, normal distribution. Finally, the posterior is a multivariate normal distribu-
tion that has the same shape as the likelihood function. More formally, the shape of the pos-
terior is

 p(!|Y, ") ∼ MN(!̂, N–1") (6.9)
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FIGURE 6.4. The likelihood function for the mean. The height of the curve is the relative probabil-
ity that the IQ scores in Table 6.2 originated from a normally distributed population with a mean equal 
to the value of µ on the horizontal axis. The maximum of the function (i.e., the maximum likelihood 
estimate) corresponds with µ = 100, which is the sample mean.
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where p(!|Y, ") is the posterior distribution, ∼MN denotes the multivariate normal distribu-
tion, !̂ is the vector of sample means, and " is the population covariance matrix. Again, the 
fact that the posterior is centered at the sample means indicates that the prior has no infl u-
ence on the distribution. Consistent with the univariate example, Equation 6.9 assumes that 
the population covariance matrix is known, but the equation remains the same when "̂ re-
places ".

6.8 THE POSTERIOR DISTRIBUTION OF THE VARIANCE

The covariance matrix plays an important role in a multiple imputation analysis, so it is im-
portant to understand its posterior distribution. However, this distribution is more complex 
than that of a mean vector, and it belongs to a distribution family that is less familiar. Conse-
quently, starting with a univariate example that involves a single variance makes it easier to 
understand how Bayesian estimation applies to a covariance matrix. As you will see, the ideas 
in this section readily generalize to a full covariance matrix. For simplicity, I temporarily as-
sume that the population mean is known, but I later describe how the posterior distribution 
changes when the mean is also a random variable.

The Likelihood Function

The fi rst step of a Bayesian analysis is to specify a prior distribution. Bayesian texts recom-
mend a noninformative prior distribution that looks somewhat different from the fl at prior 
described in previous sections. This new prior will make more sense if you fi rst understand 
the shape of the likelihood function; I will therefore present things out of order in this sec-
tion, beginning with the likelihood. Reconsider the normal likelihood in Equation 6.7. Mul-
tiplying the collection of bracketed terms by itself N times gives the sample likelihood. After 
performing this operation, the sample likelihood becomes

 .5 1 —–∑(yi–µ)2

 p(Y|µ, σ2) ∝ ——e σ2 (6.10)
 (σ2)N—

2

The right-most term of Equation 6.10 is the sum of the squared deviations around the popu-
lation mean. Thus, the likelihood further reduces to

 SS 1 –.5(–––) p(Y|µ, σ2) ∝ ——e σ2 (6.11)
 (σ2)N—

2

where SS is the sum of squares. The “proportional to” symbol (i.e., ∝) indicates that I omitted 
the scaling constant (i.e., 2π) from the equation.

Equation 6.11 is useful because it shows how the relative probability of the data (i.e., 
the sum of squares) varies across different values of the population variance. To illustrate, 
reconsider the IQ scores in Table 6.2. Assuming a population mean of µIQ = 100 yields a sum 
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of squares value of SS = 3792. I used Equation 6.11 to compute the sample likelihood across 
a range of population variances, and Figure 6.5 shows the resulting likelihood function. The 
likelihood function is a positively skewed distribution, but it works in the same manner as 
before. Specifi cally, the height of the curve is the relative probability of the data, given the 
population variance on the horizontal axis. Visually, the maximum of the likelihood function 
corresponds to a population variance that is slightly less than 200. You may recall from Chap-
ter 3 that the maximum likelihood estimate of the IQ variance was σ̂2

IQ = 189.60, so Figure 
6.5 agrees with this previous analysis.

The likelihood function in Figure 6.5 is an inverse chi-square distribution. More ac-
curately, the likelihood is a scaled inverse chi-square distribution, but I simply refer to it as 
an inverse chi-square throughout the remainder of the chapter. Using generic notation, note 
that the shape of an inverse chi-square distribution with ν degrees of freedom is

 S 1 –.5(––) Inv-χ2 ∝ ——e x (6.12)
 x

ν—
2+1

where x is a variable, and S is a scale parameter that dictates the spread of the distribution 
(e.g., larger values of S produce a wider distribution). As before, the “proportional to” symbol 
(i.e., ∝) denotes an omitted scaling constant. Like the chi-square distribution, the inverse 
chi-square is a family of distributions where the exact shape of the curve is determined by the 
degrees of freedom (and in the case of a scaled inverse chi-square, the scale parameter).

Relabeling the terms in Equation 6.12 better illustrates the linkage between the likeli-
hood and the inverse chi-square distribution. Specifi cally, replacing x with σ2, ν with N, and 
S with SS gives

 SS 1 –.5(–––) Inv-χ2 ∝ ———e σ2 (6.13)
 (σ2)

N—
2+1
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FIGURE 6.5. The likelihood function for the variance. The height of the likelihood function is the 
relative probability that a sample variance of 189.60 (the variance of the IQ data in Table 6.2) originated 
from a normally distributed population with a variance equal to the value of σ2 on the horizontal axis. 
The likelihood function for the variance belongs to the family of inverse chi-square distributions.
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Notice that Equation 6.13 is nearly identical to the likelihood, but σ2 has an exponent of 
(N/2) + 1 rather than N/2. This disparity refl ect  s a difference of two degrees of freedom, so 
the likelihood is actually an inverse chi-square distribution with ν = N – 2 degrees of 
freedom.

The Prior Distribution

Having gained some familiarity with the inverse chi-square distribution, I now return to the 
fi rst step of a Bayesian analysis, which is to specify a prior distribution. Researchers fre-
quently adopt conjugate priors that belong to the same distribution family as the likelihood, 
so the inverse chi-square distribution is a reasonable prior for σ2. However, using the inverse 
chi-square as a prior distribution requires a sum of squares value and an imaginary sample 
size (i.e., the hyperparameters). Substituting N = 0 and SS = 0 into Equation 6.13 is akin to 
saying that you have no prior information about the variance. Doing so yields the Jeffreys’ 
prior as follows:

 1
 p(σ2) ∝ — (6.14)
 σ2

Equation 6.14 is different from the Jeffreys’ prior for the mean because it assigns relative prob-
abilities that increase as the population variance approaches zero. To illustrate, Figure 6.6 
shows a graphic of the prior distribution, where the height of the curve represents the a priori 
relative probability for a particular value of σ2.

The Posterior Distribution

Having established the prior distribution and the likelihood function, the third step of a 
Baye sian analysis is to defi ne the posterior distribution. As before, the posterior is propor-
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FIGURE 6.6. The Jeffreys’ prior for the variance. The height of the curve represents each parameter 
value’s a priori weight. Unlike the Jeffreys’ prior for the mean, the prior probabilities increase as the 
population variance approaches zero.
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tional to the prior times the likelihood, so the posterior distribution for the variance is as 
follows:

 SS SS 1 1 –.5(–––) 1 –.5(–––) p(σ2|Y, µ) ∝ — × —–—e  σ2 = —–——e σ2 (6.15)
 σ2  (σ2)

N—
2 (σ2)

N—
2+1

Notice that the posterior distribution is an inverse chi-square distribution with N degrees of 
freedom and is identical to Equation 6.12. Substituting SS = 3792 into Equation 6.15 yields 
the posterior distribution in Figure 6.7. The effect is subtle, but you can see that left tail of the 
posterior distribution is slightly thicker than that of the likelihood function, which follows 
from the fact that the prior assigns higher weights to lower values of the population variance.

Estimation with an Unknown Mean

Throughout this section, I have effectively assumed that the population mean is known. 
Treating the mean as an unknown random variable changes the shape of the posterior in a 
way that is analogous to using the sample, rather than the population, formula to compute 
the variance. Bayesian texts give the mathematical details behind this change (e.g., see Gel-
man et al., 1995, pp. 67–68), but the result is a marginal posterior distribution with N – 1 
degrees of freedom (i.e., the exponent of σ2 changes from (N/2) + 1 to (N+1)/2). More for-
mally, the shape of the posterior distribution is

 p(σ2|µ̂, Y ) ∼ Inv-χ2(N – 1, SS) (6.16)

where p(σ2|Y, µ) is the posterior distribution, ∼Inv-χ2 denotes an inverse chi-square distri-
bution, N – 1 is the degrees of freedom, and SS is the sum of squares. The degrees of freedom 
and sum of squares values are known as the location and scale parameters, respectively, be-
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FIGURE 6.7. The posterior distribution of the variance. The posterior is very similar to the likeli-
hood in Figure 6.5, but its left tail is slightly thicker than that of the likelihood. This subtle difference 
results from using a noninformative prior distribution that assigns higher weights to lower values of σ2. 
The posterior distribution belongs to the family of inverse chi-square distributions.
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cause they determine the expected value and the spread of the posterior distribution (the 
mean and the variance play a similar role in defi ning the posterior distribution of the mean). 
As an aside, the sampling distribution of the variance is also an inverse chi-square distribu-
tion with N – 1 degrees of freedom; thus, adopting the Jeffreys’ prior in Equation 6.14 brings 
the Bayesian and frequentist paradigms into alignment.

6.9 THE POSTERIOR DISTRIBUTION OF A COVARIANCE MATRIX

This section extends Bayesian estimation to an entire covariance matrix. The basic procedure 
is similar to estimating a variance, and the distributions are multivariate extensions of the 
inverse chi-square. By now, you are probably familiar with the three steps of a Bayesian analy-
sis, so I give an abbreviated outline of the process. Consistent with the previous section, I 
present things out of order, beginning with the likelihood. For simplicity, I temporarily as-
sume that the population means are known, but this does not affect the logic of the estima-
tion process.

The Likelihood Function

Equation 6.11 describes how the likelihood of the sample data varies across different values 
of the population variance. The corresponding likelihood function for a covariance matrix is

 p(Y|!, ") ∝ |"|–N/2e–.5(tr["–1#]) (6.17)

where ! is the population mean vector, " is the population covariance matrix, and # is the 
sum of squares and cross products matrix. Equation 6.17 replaces the terms in Equation 6.11 
with their matrix analogs, but the likelihood still gives the relative probability of the data (in 
this case, the sum of squares and cross products matrix represents the data) across different 
values of the population parameters. To illustrate, Figure 6.8 shows the likelihood surface for 
a bivariate covariance matrix. I based the likelihood on a sample of 20 cases that I generated 
from a multivariate normal distribution with means of zero, variances equal to three, and a 
covariance equal to zero. Notice that the likelihood function is now a three-dimensional posi-
tively skewed distribution, but its shape resembles that of the univariate likelihood function 
in Figure 6.5. Consistent with its univariate counterpart, the height of the likelihood surface 
at any given point is the relative probability of the data, given the combination of population 
variances on the horizontal and depth axes.

The likelihood function in Figure 6.8 is a member of the inverse Wishart distribution 
family. The inverse Wishart density function is

 W–1 ∝ |"|–(ν+k+1)/2e–.5(tr["–1#]) (6.18)

where W –1 denotes the inverse Wishart distribution, ν is the degrees of freedom, # is the 
sum of squares and cross products matrix, " is the population covariance matrix, and k is 
the number of variables. As before, the “proportional to” symbol (i.e., ∝) indicates that I 
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excluded a scaling constant from the equation. Notice that the likelihood function and the 
inverse Wishart distribution are nearly identical, but have different exponents. This is not 
coincidental, because the likelihood function is an inverse Wishart distribution where ν 
equals N – k – 1. Finally, note that Equation 6.18 reduces to the inverse chi-square distribu-
tion in Equation 6.13 when k = 1.

The Prior Distribution

Having gained some familiarity with the inverse Wishart distribution, I now return to the fi rst 
step of a Bayesian analysis, which is to specify a prior distribution. Researchers often choose 
conjugate priors that belong to the same distribution family as the likelihood, so the inverse 
Wishart is a reasonable prior distribution for the covariance matrix. Substituting ν = 0 (i.e., 
zero imaginary data points) and # = 0 into Equation 6.18 is akin to saying that you have no 
prior information about the population covariance matrix. Doing so yields the multivariate 
version of the Jeffreys’ prior.

 k+1
 p(") ∝ |"|– —— (6.19) 2

The determinant |"| is a scalar value that quantifi es the total variation in the population 
covariance matrix. Because the value of the determinant decreases as variability decreases, 
the prior probabilities increase as the elements in the population covariance matrix approach 
zero. This was also true of the Jeffreys’ prior for the variance, and Equation 6.19 reduces to 
Equation 6.14 when k = 1.
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FIGURE 6.8. The likelihood surface for a bivariate covariance matrix. This likelihood is based on a 
sample of 20 cases from a multivariate normal population with means of zero, variances equal to three, 
and a covariance equal to zero. The likelihood surface is a three-dimensional positively skewed distri-
bution, but its shape resembles that of the univariate likelihood in Figure 6.5. The height of the likeli-
hood surface at any given point quantifi es the relative probability of the sample covariance matrix, 
given the population variances on the horizontal and depth axes. The likelihood function belongs to 
the family of inverse Wishart distributions.
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The Posterior Distribution

The fi nal step of a Bayesian analysis is to defi ne the posterior distribution. Consistent with 
the previous examples, the height of the posterior distribution is proportional to the product 
of the prior distribution times the likelihood. Multiplying the prior and the likelihood yields 
an inverse Wishart distribution with N degrees of freedom. This distribution is identical to 
Equation 6.18 but replaces ν with N. Like its univariate counterpart, the posterior distribu-
tion changes slightly when the means are unknown and becomes an inverse Wishart distri-
bution with N – 1 degrees of freedom. More formally, the posterior is

 p("|!̂, Y) ∼ W–1(N – 1, #̂) (6.20)

where p("|!̂, Y) is the posterior distribution, W –1 denotes the inverse Wishart distribution, 
N – 1 is the degrees of freedom, and #̂ is the sample sum of squares and cross products ma-
trix. In words, Equation 6.20 says that the posterior distribution of a covariance matrix is an 
inverse Wishart distribution with N – 1 degrees of freedom and scale parameter equal to the 
sum of squares and cross products matrix. The degrees of freedom and sum of squares and 
cross products matrix determine the expected value and the spread of the distribution, respec-
tively. Importantly, the data (i.e., the sample size and #) defi ne the shape of the posterior, 
and the prior effectively plays no role. This has been a consistent theme throughout this chap-
ter and is a result of adopting a noninformative prior distribution. The sampling distribution 
of "̂ is also an inverse Wishart distribution with N – 1 degrees of freedom, so the Jeffreys’ 
prior in Equation 6.19 brings the Bayesian and frequentist paradigms into alignment.

6.10 SUMMARY

Chapter 7 introduces a second “modern” missing technique, multiple imputation. Rubin 
(1987) developed multiple imputation within the Bayesian framework, so understanding the 
nuances of imputation requires a basic working knowledge of Bayesian statistics. The goal of 
this chapter was to provide a user-friendly account of Bayesian statistics, while still providing 
interested readers with the technical information necessary to understand the seminal miss-
ing data literature (e.g., Little & Rubin, 2002; Rubin, 1987; Schafer, 1997).

Understanding Bayesian statistics requires a shift in thinking about the population pa-
rameter. Unlike the frequentist paradigm, Bayesian methodology defi nes a parameter as a 
random variable that has a distribution. An important analysis goal is to describe this distri-
bution’s shape, and doing so requires three steps. The fi rst step is to specify a prior distribu-
tion that describes your subjective beliefs about the relative probability of different parameter 
values before collecting data. In general, you can specify an informative prior that assigns a 
higher weight to parameter values that you feel are more probable, or you can specify a non-
informative prior that uniformly weights different values—multiple imputation analyses 
generally use the latter approach. The second step of a Bayesian analysis is to use a likelihood 
function to summarize the data’s evidence about different parameter values. The fi nal step of 
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a Bayesian analysis is to defi ne the parameter’s posterior distribution. Multiplying the likeli-
hood by the prior distribution adjusts the height of the likelihood function up or down ac-
cording to the magnitude of the prior probabilities and yields a new composite distribution 
that describes the relative probability of different parameter values.

Because the mean vector and the covariance matrix play an important role in a multiple-
imputation analysis, a key goal of this chapter was to defi ne the posterior distributions of 
these parameters. The posterior distribution of a mean vector is a multivariate normal dis-
tribution, whereas the posterior distribution of a covariance matrix is an inverse Wishart 
distribution. The majority of multiple imputation analyses rely on a standard set of noninfor-
mative prior distributions (i.e., so-called Jeffreys’ priors). Adopting a Jeffreys’ prior effectively 
eliminates the infl uence of the prior distribution and yields a posterior distribution that is 
defi ned solely by the data. The Jeffreys’ priors also bring the Bayesian and the frequentist 
paradigms into alignment because the posterior distributions of the mean vector and the co-
variance matrix are identical to the frequentist sampling distributions.

The next chapter introduces multiple imputation. Multiple imputation is actually a broad 
term that encompasses a collection of different techniques, but I focus on a data augmenta-
tion algorithm that assumes a multivariate normal distribution (Schafer, 1997; Tanner & 
Wong, 1987). Data augmentation is an iterative algorithm that repeatedly cycles between an 
I-step and a P-step (i.e., an imputation and a posterior step, respectively). The I-step uses the 
stochastic regression procedure from Chapter 2 to impute the missing values, and the P-step 
defi nes the shape of the posterior distributions and uses Monte Carlo simulation to “draw” 
new estimates of ! and " from their respective posteriors. Repeating this two-step procedure 
a number of times generates several copies of the data, each of which contains unique esti-
mates of the missing values. The posterior step is essentially a standalone Bayesian analysis 
of ! and ", so the ideas in this chapter play an important role throughout Chapter 7.
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